Genomic and proteomic characterization of two novel siphovirus infecting the sedentary facultative epibiont cyanobacterium Acaryochloris marina.

نویسندگان

  • Yi-Wah Chan
  • Andrew D Millard
  • Peter J Wheatley
  • Antony B Holmes
  • Remus Mohr
  • Anna L Whitworth
  • Nicholas H Mann
  • Anthony W D Larkum
  • Wolfgang R Hess
  • David J Scanlan
  • Martha R J Clokie
چکیده

Acaryochloris marina is a symbiotic species of cyanobacteria that is capable of utilizing far-red light. We report the characterization of the phages A-HIS1 and A-HIS2, capable of infecting Acaryochloris. Morphological characterization of these phages places them in the family Siphoviridae. However, molecular characterization reveals that they do not show genetic similarity with any known siphoviruses. While the phages do show synteny between each other, the nucleotide identity between the phages is low at 45-67%, suggesting they diverged from each other some time ago. The greatest number of genes shared with another phage (a myovirus infecting marine Synechococcus) was four. Unlike most other cyanophages and in common with the Siphoviridae infecting Synechococcus, no photosynthesis-related genes were found in the genome. CRISPR (clustered regularly interspaced short palindromic repeats) spacers from the host Acaryochloris had partial matches to sequences found within the phages, which is the first time CRISPRs have been reported in a cyanobacterial/cyanophage system. The phages also encode a homologue of the proteobacterial RNase T. The potential function of RNase T in the mark-up or digestion of crRNA hints at a novel mechanism for evading the host CRISPR system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina.

Acaryochloris marina is a unique cyanobacterium that is able to produce chlorophyll d as its primary photosynthetic pigment and thus efficiently use far-red light for photosynthesis. Acaryochloris species have been isolated from marine environments in association with other oxygenic phototrophs, which may have driven the niche-filling introduction of chlorophyll d. To investigate these unique a...

متن کامل

Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris marina

UNLABELLED The major photopigment of the cyanobacterium Acaryochloris marina is chlorophyll d, while its direct biosynthetic precursor, chlorophyll a, is also present in the cell. These pigments, along with the majority of chlorophylls utilized by oxygenic phototrophs, carry an ethyl group at the C-8 position of the molecule, having undergone reduction of a vinyl group during biosynthesis. Two ...

متن کامل

Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina.

The primary electron donor of photosystem (PS) II in the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina was confirmed by delayed fluorescence (DF) and further proved by pigment contents of cells grown under several light intensities. The DF was found only in the Chl a region, identical to Synechocystis sp. PCC 6803, and disappeared following heat treatment. Pigment analyses i...

متن کامل

Spectral properties of bacteriophytochrome AM1_5894 in the chlorophyll d-containing cyanobacterium Acaryochloris marina

Acaryochloris marina, a unicellular oxygenic photosynthetic cyanobacterium, has uniquely adapted to far-red light-enriched environments using red-shifted chlorophyll d. To understand red-light use in Acaryochloris, the genome of this cyanobacterium was searched for red/far-red light photoreceptors from the phytochrome family, resulting in identification of a putative bacteriophytochrome AM1_589...

متن کامل

Reactive oxygen production induced by near-infrared radiation in three strains of the Chl d-containing cyanobacterium Acaryochloris marina

Cyanobacteria in the genus Acaryochloris have largely exchanged Chl a with Chl d, enabling them to harvest near-infrared radiation (NIR) for oxygenic photosynthesis, a biochemical pathway prone to generate reactive oxygen species (ROS). In this study, ROS production under different light conditions was quantified in three Acaryochloris strains (MBIC11017, HICR111A and the novel strain CRS) usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental microbiology

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2015